The essential objective of this laser advance processing meeting is to give a discussion to experts in materials science, laser processing, mechanical engineering, design tools, software modelling, characterization and metrology to share and talk about the most recent advances in the field of laser-based assembling. This get-together will offer an extraordinary chance to join the exchange for the advancement and execution of cutting edge laser-based 3D producing forms.
Â
Laser medicine consists in the use of lasers in medical diagnosis, treatments, or therapies, such as laser photodynamic therapy, photo rejuvenation, and laser surgery. After a long time of investigations and new developments in laser technology first clinical applications were performed by Choy and Ginsburg in 1983. Since that time the effectiveness of laser angioplasty in coronary and peripheral vessel is investigated in several clinical trials and first results are encouraging, so that laser is about to find its place in the treatment of cardiovascular diseases too. These advanced lasers are finding new applications in medical fields such as hair removal and skin rejuvenation procedures. Growth in the global market is also expected to be spearheaded by Diagnostic Lasers.
Medical applications:
Â
Materials Chemistry and Physics (including Materials Science Communications) is a peer-reviewed scientific journal published 18 times per year by Elsevier. The focus of the journal is interrelationships among structure, properties, processing and performance of materials. It covers conventional and advanced materials. Publishing formats are short communications, full-length papers and feature articles. Sustainability can also be defined as a socio-ecological process characterized by the pursuit of a common ideal. An ideal is by definition unattainable in a given time and space. However, by persistently and dynamically approaching it, the process results in a sustainable system.
Â
Materials Science and Engineering can sub discipline as Materials Science and Materials Engineering. "Materials science" researches the connections that exist between the structures and properties of materials. Conversely, "materials building" is, based on these structure– property connections, planning or designing the structure of a material to deliver a foreordained arrangement of properties. It is the plan and disclosure of new materials, especially solids. For all intents and purposes exceptionally critical properties of strong materials might be assembled into six distinct classes: mechanical, electrical, warm, attractive, optical, and deteriorative. For each there is a trademark sort of boost fit for inciting diverse reactions. Mechanical properties relate distortion to a connected burden or power; models incorporate versatile modulus and quality.
Â
Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometres, i.e. billionths of a meter). Biomedical engineering (BME) or medical engineering is the application of engineering principles and design concepts to medicine and biology for healthcare purposes (e.g. diagnostic or therapeutic).
Â
Abstracts enquiry
Finance enquiry
Contact Enquiry
Sponsors / Advertising
Meetings International Pte Ltd, 28 Maxwell Road, 03-05 Red Dot Traffic, Singapore, 069120.